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Abstract. Nopal (Opuntia ficus-indica (L.) Mill.) cladode has garnered great 
interest recently in the area of agro-energy as emerging biomass due to its 
sustainable production. The objective of this study was to compare the 
biochemical methane potential of different nopal cultivars in co-digestion with 
cow manure. For this purpose, two different nopal cladodes: cow manure 
proportions (75:25 and 82:18) and three different cultivars (Atlixco, Copena V1, 
and Milpa Alta) were evaluated. The results indicated that the treatments with 
higher biochemical methane potential (mL CH4 g-1

 VSfed) were Milpa Alta 75:25 
(71.4), Copena V1 75:25 (66.5), Milpa Alta 82:18 (64.6), and Copena V1 82:18 
(59.0), which showed no statistical difference (P>0.05) between them, whereas 
the Atlixco treatments (75:25 and 82:18) had the lowest (P<0.05) values (52.8 
and 41.5, respectively). The results suggest that the cow manure proportion 
and nopal cultivar used in a co-digestion system may influence its biochemical 
methane potential. 
Keywords: Nopal cultivars; co-digestion; energy crop; bioenergy, Gompertz 
model. 

 

Introduction 

Crassulacean acid metabolism (CAM) plants can be used as a source of food, 

fiber, bioenergy, and pharmaceutical products (Davis et al., 2019). Their high-

water use efficiency, even under drought conditions, makes them a good 

candidate for biomass production. Opuntia ficus-indica (L.) Mill. (OF) has become 

of great interest in the agro-energy area as emerging biomass due to its 

sustainable production (Yang et al., 2015). It has been reported that OF is an 

excellent candidate for supplying the biomass needed for global energy 

production levels expected by 2050 (IEA Bioenergy, 2007). It has also been noted 

that the expected productivity levels of CAM plants may be underestimated, 

particularly in the Eastern hemisphere, so these plants could play an important 

role in biomass production for bioenergy in the coming years (Hartzell et al., 

2021). Quiroz et al. (2021) indicated that intensification of cultivar management 

would increase the methane potential. These authors reported that the theoretical 

methane potential for Opuntia could range from 681 to 17,433 m3 ha-1, depending 

on the dry biomass produced. In a five-year biomass production trial using three 

different Opuntia species (O. cochelenillifera, O. ficus-indica, and O. 

streptacantha), Neupane et al. (2021) reported a maximum of 15.52 Mg ha-1 year-

1 (in dry biomass units). These authors have shown that, although no statistical 

difference was found, OF is the most promising plant due to its positive response 

to water inputs. There are some proposals for using OF as a feedstock for 

bioethanol (Alencar et al. 2020; Perez-Cadena et al., 2018; Santos et al., 2016) 

and methane (Ramirez-Arpide et al., 2018; Ramirez-Arpide et al., 2019; Santos 

et al., 2016) production.
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Our research group has reported that using the digestate obtained after co-digestion of OF 

cladodes and cow manure has the potential to support the reduction of global warming (Ramirez-

Arpide et al., 2018). The use of biofertilizer obtained with the anaerobic digestion of Opuntia 

heliabroavana has been reported (Quintanar-Orozco et al., 2018). OF digestate can also be used 

as an alternative biofertilizer since it conserves most of the nutrients provided by the plant (Krumpel 

et al., 2020). In addition to the amount of dry mass, biomass chemical composition plays an 

important role in methane production. A study conducted to evaluate the influence of co-digestion 

of agro-food biowastes with manure on methane production found that it could increase by 30 to 

250 % (Duarte et al., 2021). 

 

Regarding the influence of chemical composition on methane production, Yan et al. (2017), in a 

study of 20 different leafy vegetables, found that the volatile solids: total solids ratio and lignin and 

hemicellulose content influence methane production. The chemical composition of cultivars of the 

same crop may vary in quantity and diversity of some constituents such as carbohydrate, protein, 

ash, lipid, phenolic, pigment, and soluble/insoluble fiber contents (Ragaee et al. 2012; Xiao et al. 

2015). In the area of biofuel production, for example, Sheetal et al. (2019) reported that different 

rice (Oryza sativa L.) cultivars (i.e. Pusa 44, IR36, Pusa basmati 1121, PRH 10, Taraori basmati) 

produced different ethanol yields. Among the cultivars, Taraori basmati had the highest ethanol 

yield. Similarly, Pazderů et al. (2014) reported different methane yields obtained from three 

different sorghum (Sorghum bicolor L.) cultivars: Botival (207.4 m3 t-1), Sucrosorgo (243.8 m3 t-1), 

and Goliath (246.4 m3 t-1). On the other hand, in Tunisian date seed (Phoenix dactylifera L.), Souli 

et al. (2020) found that the cultivar Deglet Nour had a higher cumulative methane yield (0.327 Nm3 

CH4 kg-1 COD) than the other cultivars tested (Benjou, Ammari, Kentichi, Alig, Kenta), with values 

ranging from 0.267 to 0.318 Nm3 CH4 kg-1 COD. 

 

Taking into consideration what has been stated above, different OF cultivars can be expected to 

have different methane production levels. However, no reports are evaluating the influence of 

different OF cultivars on their biochemical methane potential (BMP). Thus, the objective of this 

work was to compare the BMP of different OF cultivars in co-digestions with cow manure (CM). 

For this purpose, we evaluated two different OF: CM proportions (75:25 and 82:18) and three 

different OF cultivars (Atlixco, Copena V1, and Milpa Alta). Anaerobic digestion performance was 

evaluated using the modified Gompertz model. 

 

Materials and Methods 
Cladode samples from three cultivars (Atlixco, Copena V1 and Milpa Alta) of Opuntia ficus-indica 

(L.) Mill. and cow manure was provided by a dairy cattle farm in Chapingo, State of Mexico, Mexico. 

Both OF and CM were used as substrates for co-digestion systems. Table 1 summarizes the 

characteristics of the OF Atlixco, OF Copena V1, OF Milpa Alta, and CM substrates. For each OF 

cultivar, two different OF: CM proportions (75:25 and 82:18) were evaluated. These proportions 

were chosen based on C: N ratios close to 20 (considered as the best ratio for efficient anaerobic 

digestion) (Tufaner and Avşar, 2016). 

 

The anaerobic digestion was performed in microcosms using 305-mL serum bottles with 250 mL 
of working volume. The inoculums were added at 10% (v/v) and were obtained from two 10-L 
mesophilic digesters fed with OF: CM ratios of 75:25 and 82:18, respectively, both at 4% of total 
solids. The treatments feed was prepared with two different feedstock ratios of OF cladode and 
cow manure in aqueous solution, in triplicate (three experimental replications). Parameters 
characterizing the initial and final chemical composition of feed treatments are reported in Table 2. 
In all treatments, the anaerobic condition was produced by purging microcosms with nitrogen gas 
and incubating at 37 ± 1 °C. 

https://www.jpacd.org/
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Table 1. Chemical composition of substrates. 

Parameters Units 
Substrate 

OFA OFC OFM CM 

pH - 4.52 4.05 4.15 8.61 

TS [%] 4.37 3.67 4.47 5.56 

VS/TS [%] 68.56 76.08 82.49 53.00 

Protein [%] 6.88 7.74 4.71 10.8 

Lipids [%] 2.07 1.99 5.4 2.0 

C [%] 37.36 35.93 36.06 24.55 

H [%] 4.92 4.54 4.93 3.19 

N [%] 1.52 1.52 1.03 2.28 

S [%] 0.42 0.29 0.08 0.29 

C/N - 24.58 23.72 35.01 10.78 

TS: total solids; VS: volatile solids; OFA, OFC, and OFM codes are Opuntia ficus-indica (L.) Mill. cladode cultivar Atlixco, 
Copena V1, and Milpa Alta, respectively; CM: Cow manure. 

 
 
Table 2. Initial and final chemical composition of treatments. 

 

Treatments 

Substrates  Parameters 

OF CM C/N 
pH TS [%] VS/TS [%] COD [mg L-1] 

Initial Final Initial Final Initial Final Initial  Final 

OFA75 75 25 21.1 6.1 7.8 3.5 2.6 63.3 40.5 30,526 12,098 

OFC75 75 25 20.5 5.4 7.8 3.5 2.3 66.5 37.9 31,243 15,640 

OFM75 75 25 29.0 5.7 7.6 3.7 3.1 67.7 40.9 33,984 22,261 

OFA82 82 18 22.1 5.9 7.8 3.2 2.4 71.3 32.4 29,640 14,924 

OFC82 82 18 21.4 5.0 7.8 3.5 2.9 70.8 43.0 32,719 14,586 

OFM82 82 18 30.7 6.6 6.7 4.2 2.7 61.6 29.9 33,098 6,532 

TS: total solids; VS: volatile solids; OFA, OFC, and OFM codes are Opuntia ficus-indica (L.) Mill. cladode cultivar Atlixco, Copena V1, 
and Milpa Alta, respectively; CM: Cow manure; COD: chemical oxygen demand. 

 
Analytical methods 

Total solids (TS), volatile solids (VS), and chemical oxygen demand (COD) were determined using 

procedures laid out in the American Public Health Association’s Standard Methods for the 

Examination of Water and Wastewater manual (1998). The content of several volatile fatty acids 

and methane was determined according to Meneses-Reyes et al. (2017). 

 

Biochemical Methane Potential 

Experimental data from methane production were modeled using the Gompertz model as reported 

in detail by Meneses-Reyes et al. (2017) to obtain the kinetic parameters of methane production, 

including the Biochemical Methane Potential (BMP, mL CH4 g-1 VSfed), methane production rate (µm, 

mL CH4 g-1 VSfed d-1), and lag phase (λ, d) values according to Equation 1 below: 

𝐴𝑀𝑌 = 𝐵𝑀𝑃 ∙ 𝑒𝑥𝑝 {−𝑒𝑥𝑝 [
𝜇𝑚∙𝑒

𝐵𝑀𝑃
(𝜆 − 𝑡) + 1]}         (1) 

https://www.jpacd.org/
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AMY is the accumulated methane yield (mL CH4 g-1 VSfed) at time t (d), e is the mathematical 

constant (2.718282), and t is the digestion time (d). Modeling was performed using SigmaPlot 14.0 

software (Systat Software, Inc. USA). 

 
Statistical analysis 

The experimental data were statistically analyzed using ANOVA. To determine significant 

differences among treatments, Fisher analyses were performed, with P<0.05 being considered 

significant. ANOVA and Tukey’s means comparison test was performed using SAS 9.1 statistical 

software (SAS Institute Inc., Cary, NC, USA). 

 

Results and Discussion 

The accumulated methane yield and the volatile fatty acids profile for all treatments is shown in 

Figure 1 and Figure 2, respectively. The higher methane yield was obtained by treatment OFM75, 

followed by OFC75, OFM82, and OFC82, which showed no statistical difference (P>0.05) among 

them, whereas the two treatments derived from the cultivar Atlixco (OFA75 and OFA82) had the 

lowest (P<0.05) methane production. On the other hand, considering the OFM75 methane yield 

value, our data indicated that other treatments showed 3.7% (OFC75), 9.4% (OFM82), 16.0% 

(OFC82), 28.6% (OFA75), and 43.8% (OFA82) lower methane production values. The methane 

yield obtained in treatments OFM75 and OFC75 was slightly higher than that previously reported 

by Uribe et al. (1992) (70.5 mL CH4 g-1
 VSfed) but lower than that reported by Jigar et al. (2011) 

(123.5 mL CH4 g-1
 VSfed). 

 

 
Figure 1. Accumulated methane and volatile fatty acids profile per treatment during the anaerobic 

digestion process. OFA, OFC and OFM codes are Opuntia ficus-indica (L.) Mill. (OF) cladode 

cultivar Atlixco, Copena V1 and Milpa Alta, respectively. The ratio between OF and cow manure 

for each treatment is defined in Table 2. Data are the average (± standard deviation) of three 

replications. 

https://www.jpacd.org/
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Figure 2. Changes in the acetate, propionate, and butyrate concentration in the anaerobic 

digestion. OFA, OFC and OFM codes are Opuntia ficus-indica (L.) Mill. (OF) cladode cultivar 

Atlixco, Copena V1 and Milpa Alta, respectively. The ratio between OF and cow manure for each 

treatment is defined in Table 2. 

 
Methane production curves of all treatments showed three phases: 1) slow gas production period 

(lag phase), 2) rapid gas production period (exponential phase), and 3) period in which the rate of 

gas production slows and eventually trends to zero (asymptotic phase) (Figure 1). Based on the 

above-mentioned methane production results and to analyze the anaerobic digestion performance 

of the treatments, kinetic parameters of methane production were calculated (Table 3). Methane 

production of all treatments fitted accurately to the Gompertz model. Similarly, with the methane 

yield results, the higher BMP was obtained by OFM75, followed by OFC75, OFM82, and OFC82, 

whereas OFA75 and OFA82 had the lowest BMP. 

 

The difference observed in methane production among different studies may be attributed to 

several factors such as the OF cultivar used and its chemical composition, which may affect the 

methane production, and the co-digestion conditions. Thus, the higher methane production of 

OFM75 may be attributed to the chemical composition of this cultivar, because of its high lipid 

content, as well as its low content of S and N (Table 1). In this regard, Edwiges et al. (2018) reported 

that chemical composition influenced the methane potential of fruit and vegetable waste under 

anaerobic digestion. The authors found that lipid content correlated positively with methane 

production. In a related study, Cu et al. (2015) found that lipid content explained most of the 

variation (59.9%) in a model to predict the methane production from combined animal and plant 

biomass. 

 

In addition, S and N levels could be an indicator of minor methane production inhibition by potential 

sulfhydric acid and ammonia accumulation. In contrast, the high S and N content in the cultivars 

Copena and Atlixco (Table 1) can cause inhibitory effects on biogas and methane production. 

Accordingly, Yenigün and Demirel (2013) stated that even though ammonia is an essential nutrient 

for bacterial growth, it might inhibit methanogenesis during anaerobic digestion if high 

concentrations are reached. Similarly, potential inhibition of methane production by S conversion 

is due to competition for common organic and inorganic substrates from sulfate-reducing bacteria, 

which cause less methane production, or to the toxicity of these elements to bacterial groups (Chen 

https://www.jpacd.org/
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et al. 2008). However, the presence of these inhibitors was not evaluated in this study and requires 

additional experimental confirmation. The data suggest that lipid content and the potential presence 

of inhibitors influence the methane production of the OF cultivars evaluated in the present study. 

 

In contrast, no statistical difference was found among all treatments for the methane production 

rate (µm,) kinetic parameter (Table 3), which ranged from 1.4 to 2.6 mL CH4 g-1
 VSfed d-1. Similar 

behavior was observed for the lag phase (λ) time, where no statistical difference was found among 

most treatments. However, it was observed that OFA and OFM treatments showed low λ values, 

which is an indicator of fast microorganism adaptation to the substrate. Possibly because the 

inoculum used for the present study was obtained from digesters that were fed with OFM as 

substrate. Interestingly, OFC82 showed the highest λ value (Table 3). These observations could 

be an indicator of a lack of coordination between trophic groups during the anaerobic digestion 

process. These observed differences may be attributed to diverse factors, including substrate 

characteristics, which could lead to the variability in the structure and function of the microbial 

population (Zhang et al. 2016), as well as to the fact that different substrate ratios (environmental 

gradients for microbial populations) result in the dynamics of syntrophic populations being highly 

selective and thus leading to differences in methanogenic activity (Werner et al. 2011). 

 

Conversely, the results evidenced an accumulation of mainly acetate, and to a lesser extent of 

propionate, at the beginning of the experiments in all treatments (Figure 2). In most cases, when 

the above-mentioned volatile fatty acids (VFAs) reached their maximum production, depending on 

the treatment, at around day 15 to 30, methane production started. This observed behavior can be 

attributed to acetate consumption for methane production since it is used by methanogenic 

microorganisms. Concerning the VFA production of the OFC82 and OFM75 treatments, the 

behavior of their methane production curves shows prolonged (large) λ values, suggesting that 

these treatments follow different VFA accumulation pathways, with the main routes being 

carbohydrate fermentation during acidogenesis and, to a lesser extent, amino acid fermentation 

and long-chain fatty acid oxidation (Batstone et al. 2002). Accordingly, the proportion and OF 

cultivar used influenced BMP. To the best of our knowledge, this is the first time the influence of 

different OF cultivars on BMP has been described. 

 

According to this, the treatments with the higher methane yield (OFC75 and OFM75) were those 

with the lowest accumulation of these VFAs, which suggests their consumption for methane 

production. On the other hand, treatments OFA82 and OFC82 had a greater accumulation of those 

VFAs, which is following their lower methane production. Interestingly, it can be observed that 

regardless of the OF cultivars, the treatments with a 75:25 OF: CM proportion had better methane 

production. Accordingly, these treatments showed low VFA accumulation. 

 

Figure 3 shows that there is a trend for treatments with similar C: N ratios to form groups, with the 

treatments with the higher C: N values being those with the higher BMP. It is also important to note 

that as the treatments with low C: N ratios (OFA and OFC) may be affected by inhibitors and 

considering that all treatments had the same source of N, a dilution effect may have occurred. 
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Table 3. Estimated parameters of the Modified Gompertz model from the experimental data. 

Substrates 
* mean 

[d] 

µm* mean 
[mL CH4 g

-1 VSfed d
-1] 

BMP* mean 
[mL CH4 g

-1 VSfed] 
R2 

OFM75 19.8ab 1.4a 71.4a 0.986 
    0.992 
    0.980 
     

OFC75 14.5b 2.6a 66.5a 0.978 
    0.978 
    0.975 
     

OFM82 10.0b 1.9a 64.6a 0.995 
    0.99 
    0.994 
     

OFC82 34.6a 2.4a 59.0a 0.998 
    0.970 
    0.996 
     

OFA75 8.4b 2.3a 52.8b 0.980 
    0.987 
    0.989 
     

OFA82 8.5b 1.9a 41.5b 0.972 
    0.988 
    0.989 

* Different letters in the same column are significantly different at  = 0.05. OFA, OFC and OFM codes are Opuntia ficus-indica 
(L.) Mill. (OF) cladode cultivar Atlixco, Copena V1 and Milpa Alta, respectively. The ratio between OF and cow manure for each 
treatment is defined in Table 2. 

 

 
Figure 3. BMP as a function of different C: N ratios at the endpoint. OFA, OFC and OFM codes 

are Opuntia ficus-indica (L.) Mill. (OF) cladode cultivar Atlixco, Copena V1 and Milpa Alta, 

respectively. The ratio between OF and cow manure for each treatment is defined in Table 2. 

 
Conclusions 

To the best of our knowledge, this is the first report describing the influence of Opuntia ficus-indica 

(L.) Mill cultivar on biochemical methane potential. The results indicated that the best biochemical 

methane potential (mL CH4 g-1
 VSfed) was obtained by Milpa Alta 75:25 (71.4), followed by Copena 

V1 75:25 (66.5), whereas the Atlixco treatments (75:25 and 82:18) had the lowest biochemical 

methane potential. These results demonstrate that BMP is dependent on the co-digestion 
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proportion and Opuntia ficus-indica (L.) Mill cultivar. Overall, the results suggest that the chemical 

composition of the cultivar, mainly its lipid and S and N contents, influences methane production. 

Thus, for bioenergy applications and follow-up research, it is suggested to use Opuntia ficus-indica 

(L.) Mill Milpa Alta or Copena V1 cultivars in co-digestion with cow manure at a 75:25 ratio. 
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